
The Unreal Editor as a Web 3D Authoring Environment
David Arendash

Quantum Leap Computing

Abstract

Epic Games provides a free game level editor with titles based
on its Unreal engine. The editor provides a rich set of authoring
tools that can be used to create fully interactive environments.
This paper describes a tool that converts Unreal levels to web-
ready environments in VRML and X3D. The paper also examines
the similarities between first-person-shooter games and web 3D
worlds, and discusses the implications of having a low-cost, fully
featured virtual world authoring environment available for
creating web 3D content.

CR Categories: I.7.2 [VRML]; K.8.0 [Games]; K.8.1
[Freeware/Shareware] and [Graphics]; I.3.4 [Graphics Utilities];
I.3.5 [Computational Geometry and Object Modeling]; I.3.6
[Methodology and Techniques]; I.3.7 [Three-Dimensional
Graphics and Realism]; I.3.8 [Applications]

Keywords: VRML, X3D, Unreal, game, tool, 3D, authoring

1 Introduction

VRML has been around since 1995, and most 3D authoring
packages have some VRML export capability. VRML’s latest
incarnation is X3D, which updates the specification to more
modern standards, including additional graphics features and an
XML encoding. Since X3D supports a VRML data encoding and
implements a superset of the VRML97 standard, henceforth in
this paper the term ‘X3D’ will comprise VRML97 as well as
X3D.

Tools that have X3D export capabilities cost hundreds, some
even thousands of dollars, and do not necessarily allow for
authoring of interactivity, sounds, etc. Generally, 3D authoring
packages focus on object creation and texturing, with less (if any)
ability for lighting, compositing, etc. Having geometry and
texturing is great, but for real fun, we want to be able to make
things move and interact, to set up lights and cameras. There
aren’t many open-standard 3D file formats which provide for all
this. But X3D does! For the dedicated X3D author, hand-editing
(and custom scripting) has been the only real method of
embedding objects into a scene and bringing them to life. The
difficulty of this process has contributed a widespread lack of
realistic content. An inexpensive, full featured, easy to use
authoring environment which can provide for all of this - with no
need for technical expertise - has been unavailable to X3D
authors, until now.

It is possible to output Unreal geometry as X3D geometry,
generally as indexed face sets. X3D also allows for specification
of lights, as does Unreal. X3D also supports sounds, so does
Unreal. And X3D allows for proximity sensors and time sensors.
Of course, so does Unreal.

What has been developed here is a stand-alone Windows
application that converts the scene files exported from Unreal-
based editors to X3D, with great fidelity of content, including
interactivity.

2 Background

Unreal technology comes from Epic Games. The games in the
Unreal line are generally played as FPS (First Person Shooters),
wherein an avatar (‘you’) roam about spaces (which are
sometimes called ‘levels’ or ‘maps’), often in pursuit of things at
which to shoot various virtual weapons.

UnrealEd
Since the release of the original ‘Unreal’ in 1997, Epic Games

has generously included the Unreal Editor (UnrealEd) with all
Unreal titles. UnrealEd is an IDE (Integrated Design
Environment) anyone can use to create new game spaces for
Unreal-based games. Unreal Tournament includes UnrealEd 2.0,
and Unreal Tournament 2003 and Unreal 2 include UnrealEd 3.0.
Other titles based on the Unreal technology also ship with editors
(Wheel of Time, Rune, etc.). (An exception is America’s Army,
which, although using Unreal technology, does not include an
editor).

Thanks to the availability of UnrealEd, the Unreal
communities have produced many thousands of add-ons for
Unreal games. These include not only new levels, or maps, but
other ‘mods’ (modifications) which can actually alter the entire
play of the game. These are all made possible by the Unreal
Editor’s integrated script editor, UnrealScript, that is a Java-like
language.

UnrealEd’s UI looks much like most 3D authoring tools,
having (by default) 3 orthogonal views and an arbitrary
perspective view. Each window can be configured separately.
Viewing options include wire-frame, shaded, BSP-cuts, and
dynamic lighting. The latter shows a good real-time
approximation of the scene as it would look in the game,
including lighting and sounds.

Figure 1. UnrealEd 2.0

All entities (objects, sounds, lights, etc) are called ‘actors’, as
they are subclassed from the base class ‘Actor’. Unreal levels are
constructed using CSG (Constructive Solid Geometry). The
Unreal universe is initially solid, so the first step in creating a
level is to ‘hollow out’ or subtract a void into the world (this

ensures no ‘leaks’ in the geometry). A host of primitives can be
added, subtracted, intersected, unioned, and so forth to build up
the world. Solid objects are referred to as ‘Brushes’, and brushes
can be built up using the ‘builder brush’ and CSG operations.
Bitmap, animation, and/or procedural textures can be applied to
any surface (a procedural texture editor ‘Fire Paint’ is built-in).
Lights of many types can be added, including a host of dynamic
lighting effects. Sounds may also be added with a variety of
behaviors, for ambient and/or positional audio. ‘Triggers’ of many
types provide for proximity detection, timed events, event
multiplexing, etc. Objects may be built as ‘movers’ who can then
be assigned key-frame movement with parameterized behaviors.
‘Meshes’ (pre-defined object meshes) may be inserted as
decorative objects. Fly-though camera positions may be supplied
as well. A simple convention for connecting triggering events to
other objects (movers, sounds, lights, other triggers, etc.) provides
for complex interactivity. Using the integrated script editor, any
actor may be subclassed to build out almost any kind of new actor
an author can conceive.

UnrealEd builds game levels which are texture-baked,
compiled binaries that the game engine can efficiently process
when running the game. It also provides an import/export text
format, T3D, which describes the level. This text format is fairly
easy to parse, and contains almost all of the information needed to
fully describe a game level (some texture info and custom scripts
are stored separately).

4 The UnrealToX3D Converter
4.1 The Authoring Challenge

UnrealToX3D actually evolved from UnrealToOBJ. I had
been experimenting with other authoring packages that imported
Alias/Wavefront OBJ format. I was unimpressed with higher-end
authoring tools, and found I could create objects much faster with
UnrealEd. But with no direct export to OBJ that included all the
texture info, I was stuck. I was already familiar with the T3D
format, having worked on several utilities for importing 3DMF
and building specialty objects into Unreal levels. It was easy
enough to convert the solid geometry described in the T3D file to
OBJ format. The real challenge was converting the texture
coordinates. Unreal textures are described as tiling a plane in
space coincident with the polygon on which they lie. (See Figure
2).
 Each surface has a 3D vertex for U, another for V, and another
for the texture normal (these are usually orthogonal). A pan value
(in UV units) may also be supplied. This scheme allows for
arbitrary scale, rotation, shear, and displacement of the texture
without having to describe UV coordinates for each vertex on a
polygon. To turn these various directionals into common UV
coordinates, I find a transform that rotates the polygon from its
arbitrary orientation onto the XY plane, and apply the same
transform to the U and V texture components. I can now use the
transformed U sand V component (which are now co-planar with
the XY plane) to scale the texture. Using the pan components as
offsets, I now use the polygon’s coordinates (which are now all in
the XY plane) to produce the UV coordinates.

The other challenge in conversion came with orientation.
UnrealEd 1 and 2 use Euler angles (yaw, pitch, roll) to describe
orientation. X3D uses quaternion-based orientation. That math
was an entertaining exercise. UnrealEd 3.0 uses quaternions.

Having converted the geometry and textures, I found quite
quickly that I had a need to add lights, cameras, and other
elements to assemble a complete scene. There was really only one
choice for an open-standard and widely accepted file format:
X3D. That it also supports interactivity was a great bonus. I

realized I now had the ability to design, light, and bring to life
spaces, with a nearly-free full-featured design tool.

Figure 2 Unreal to UV mapping

4.2 The Converter Program: UnrealToX3D
UnrealToX3D is a dialog-based application that comes in its

own installer. It uses few external components, most notably a
‘tab’ control for organizing the options. It runs in any 32-bit
Microsoft Windows environment.

UnrealToX3D is currently implemented with Visual Basic.
There is a parallel C++ effort, but it is lagging severely behind the
VB code.

The UI for UnrealToX3D is pretty minimal. The tabbed
sections provide options for the various components (geometry,
textures, sounds, meshes, lights, etc.), and a picture display area
shows bitmap textures as they are processed. There is also a
display of the UV mapping, for added entertainment value.

The user can specify the base paths for the assets, which will
be searched recursively when running. File extensions may be
specified for the textures, which allows the user some flexibility
with formats. The ‘general’ options include default navigation
type, default ‘headlight’ setting, and whether to include fly-
through viewpoints.

The user can also specify the margin around ‘movers’, which
is a proximity sensor, which is attached to the moving object
which tells the object to move when the avatar bumps into it.
(Unreal has its own default, but the author can change it in this
UI).

Additionally, the user can specify an extra margin above
‘teleporter’ entrances. This is needed because of the different
ways Unreal and X3D specify avatars, and how they collide with
things. In Unreal, the avatar is the shape of the player’s character,
often times human. In X3D, the avatar is always a sphere. I found
that because of this difference, teleporters needed extra room
above them for the X3D player to catch the collision and trigger
teleportation.

Figure 3. The UnrealToX3d Application

UnrealToX3D remembers the last 10 files converted, and all
options last used to make the authoring cycle faster. Also, if the
file has been scanned, the user can opt to not re-scan it if the input
file has not changed (as in the case where he is trying different
options). This is handy when processing very large input files.

As an aid to ‘debugging’ the space, the user can also opt to
‘show triggers’. In this case, the proximity sensors are indicated
with translucent non-colliding boxes of the same size. This lets
the author see where his triggers are (see Figure 4).

During processing, the input file is parsed in several passes:
one for geometry and textures, another for movers, another for
lights, etc. If an asset file does not already exist in the destination
folder, the paths specified are searched for suitable matches, and

found files copied to the destination folder. Routes and scripts are
generated as needed and put into a list which is attached toward
the end of the output file. Both classic VRML97 and XML
encodings are produced simultaneously.

After processing, the bounding box extents for the entire scene
are displayed. If any assets were not found, list(s) of those will be
displayed as well. Those lists are also saved as text files to the
destination folder.

Figure 4. Visible ‘triggers’ (proximity sensors) in CTF-
Karnack_SGC. One is the entrance to the Stargate’s invisible

teleporter entrance. The others are around the doors exiting the
Gate Room. Level design by Pat-BadKarma-Fitzsimons

4.3 Unreal Features Supported by UnrealToX3D
UnrealEd comes outfitted with thousands of components

(‘actors’) for creating game levels. I have not implemented
conversion for all of them. In fact, because Unreal is extensible,
there is no way I could. Instead, I have started with the
mostpopular components to allow authors to create compelling
content.

• Objects – The gross geometry of the space. UnrealEd allows
for additive and subtractive objects, but UnrealToX3D currently
only supports additive geometry. However, geometry can be
reduced from its component elements to a single object (using the
‘builder brush’) which is also exported with the T3D file. This
allows the author to either build his entire space with additive
geometry, or to build arbitrarily, and use the ‘builder brush’ to
create a single object.

• Textures – Most textures used in Unreal are simple bitmaps.
They are sized in power-of-2 on either edge. The surface editor
allows the setting of various attributes such as UV panning, scale,
rotation, transparency, etc. To the best of VRML97’s ability, these
are supported in the current version of UnrealToX3D (X3D
provides conveniences which VRML97 does not have, this will be
addressed shortly). Currently not supported are animated textures
or procedural textures (although screenshots may be cropped and
used as a static version).

• Movers - These are objects that move. UnrealEd allows for
key-frame animation of objects, as well as a few simple physical
motions, like constant rotation (UnrealEd 3.0 includes more
physics, but that’s for future work).

• Lights -The basic light is generally a point light, with a
color, intensity, and radius. Other supported light types are
SpotLights, and ‘flicker lights’ which have a strobing effect.
Other lighting effects can be scripted as well, this is for future
work. All lights are exported without regard to what the target

application will do with them. This allows the author to import the
X3D to, say, 3D Studio Max, and get a nice ray-trace of the space.

If a lens flare texture is indicated, this is exported as a screen-
facing billboard.

Curiously, X3D does not have an ‘ambient light’ node. Unreal
allows for an ambient light. To get around this, the ambient light
specified in the game LevelInfo structure is applied to all
materials as an emissive color. It isn’t dynamic, but it is better
than nothing.

• Sounds - Tokens representing sound sources may be placed
in the space. They may be looping, one-shot, and/or triggered.
There is also support for ‘dynamic ambient sounds’ which is a list
of sounds that play randomly given several parameters. These can
be used to great effect for outdoor ambiance.

• Meshes - In Unreal technology, a Mesh is a reusable
textured object. They may be animated. The T3D file does not
include mesh information, only a reference to the mesh (and its
location, orientation, etc.). No attempt is currently made to extract
meshes with UnrealToX3D. A separate package, UTPT, can be
used to export meshes to 3DS format, and several packages may
be used to convert those to X3D. In practice, meshes are brought
into the X3D space as ‘inlines’ (externally referenced reusable
files).

• Triggers - A trigger may be a proximity sensor that sends an
event when it is entered (or exited), based purely on time, or both.
Special triggers, such as ‘Dispatchers’ will multiplex one event
into many, with optional time delays. A Trigger can be used to
fire a sound, mover, dynamic light, other triggers, etc.

A special circumstance is a ‘bump mover’ which begins to
move when the avatar bumps into it. Examples might be doors or
push-buttons. This is accomplished in X3D by creating a
proximity sensor to enclose the object which will move, and
routing that sensor the to the timer which drives the interpolators
which move the object.

Triggers which use proximity detection are defined in Unreal
as cylnders, but X3D currently only allows for box-shaped
sensors. UnrealToX3D constructs a box which encloses the
cylinder in these cases.

• Skyboxes - A skybox is some geometry that appears very
large and very far away. Generally, they are used to display a sky
with clouds, stars, planets, trees, mountains, etc. In X3D, this
might be done with the ‘Background’ node, but that is just a
simple static cube. An Unreal skybox can contain any geometry,
lights, triggers, movers, etc. So the author may have birds, planes,
clouds, all moving in the skybox. To do this with a panorama, one
would need to project a rendition onto the bitmap(s) which are
applied to the background, but resolution and animation would
suffer, and interactivity would be completely lost. Instead,
UnrealToX3D allows the author to convert the skybox as a
separate file, with relatively large dimensions, and the ‘main map’
is loaded as an inlined file within that larger space.

• Viewpoints - In X3D, Viewpoints are basically cameras. In
Unreal, the author can place ‘PlayerStart’ tokens (which are
where players will spawn into the game). These PlayerStarts are
repurposed to be Viewpoints.

• Teleporters - A common mode of ‘transportation’ in Unreal
games is the Teleporter. This is an area that, when the avatar
enters, is magically transported to a new destination. There are
two types of Teleporters supported in UnrealToX3D, the
VisibleTeleporter (which looks like a small cyclone), and a
standard Teleporter, which may or may not be visible. If it is
visible it generally uses a screen-facing billboard texture. These
are implemented with proximity sensors at the teleporter entrance

and a viewpoint at the teleporter exit. The proximity sensor is
routed in such as way as to bind the avatar’s viewpoint to the
teleporter’s exit viewpoint. In practice, the player walks into the
teleporter and is suddenly somewhere else.

• Flythroughs – UnrealEd allows for fly-throughs. This is
where the avatar is flown around the space in a guided tour. The
author uses ‘InterpolationPoints’ to set the path, orientation,
speed, and FOV. In-game, there is a smooth spline-like
interpolation between these points, which appears to use the
Chaikin algorithm.

• General options – UnrealToX3D by necessity includes
several general options. These include the type of default
navigation (walk, fly, etc.) to be used, the overall scale of the
space, and so forth. If the Unreal map contains authoring
information, it is brought into the X3D file as well.

4.4 Behavioral Features
Interactive components in Unreal are implemented via a

simple tag/event naming convention. Any component can have a
name (tag), and many can issue events. When an event is fired,
(say by a proximity sensor), any other component having a tag
that matches the event is fired. It was possible to employ Unreal’s
tag/event convention to connect events to triggered motion,
lighting, and sounds. This is done in X3D through ‘routes’.

Where X3D does not have built-in support for a behavior, it
may be scripted through ECMAScript (or Javascript), and where
behaviors seen in Unreal are not readily available, it is possible to
provide ready-made scripts to emulate them. As of this writing,
these scripts are embedded in the X3D file, but an external library
of PROTOs is available as well, and will eventually be used
optionally instead. Protos are a way to create new elements for
X3D, or to sub-class existing ones.

For example, one such behavior is UV-animated textures.
Unreal allows for time-based panning of textures, which work
very well for emulating flowing water, moving clouds, lava, fire,
etc. Until X3D, a script was necessary for animating the texture
coordinates. The conversion tool computes the values for the
timer and interpolation of the texture coordinates, and routes them
automatically.

5 The Authoring Process
Using UnrealEd in conjunction with UnrealToX3D requires a

few simple steps. In general, the author will have UnrealEd,
UnrealToX3D, and an X3D viewer running at the same time. A
small amount of set-up is involved, after which most of the
process is straightforward.

1. Create asset libraries
If you are exporting an existing map, you can use the

command line for UCC (which is already installed with the game)
to export textures as BMP files. For example:

ucc BATCHEXPORT Ancient.utx TEXTURE BMP
c:\data\Textures\Ancient

This will extract all the textures from the binary texture package
‘Ancient.utx’ and put them into a folder called ‘Ancient’ in the
indicated path.

Then use any paint package you like to batch convert them to
JPEG, because that is what X3D likes. In the case of masked
textures (those with one or more bits of alpha transparency), you
should convert those to PNG format. Export sounds the same
way:

ucc BATCHEXPORT AmbOutside.uax SOUND WAV
c:\data\Sound\ AmbOutside

 This produces WAV files, which are X3D-ready. Use UTPT to
export meshes to 3DS format, then any package that can read 3DS
and output VRML and/or X3D. You will likely have to link the
texture file(s) to the mesh. I use ‘Deep Exploration’ from Right
Hemisphere to assign those textures.

If you are creating new original content, you probably want
to import your assets into UnrealEd so that you can design with
them. Textures should be sized in powers of 2 (ex: 128x256,
512x512, etc.) WAV sounds can be imported pretty much as-is.
Meshes can be imported from Lightwave and Maya (and others)
using various free utilities.

In any case, remember that the assets in UnrealEd need to
have external file representations.

I have created a folder structure that starts with ‘Textures’
and contains one folder for each Unreal texture package. I have
done similar for ‘Sounds’ and the sound packages. UnrealToX3D
will recursively search the folders for assets, and copy them to the
destination folder (if they do not already exist there). Meshes
currently need have their associated textures in the same folder. I
dumped all my meshes into one folder.

2. Create the space.
There are many online resources for tutorials on using

UnrealEd. If you are exporting an existing level, skip to step 3. If
you are creating from scratch, you may want to hollow out the
space, and use additive brushes only. If you do need to subtract
geometry, you can use the ‘Builder Brush’ to reduce that
geometry to additive-only by intersecting a ‘Builder Brush’ with
the objects in question, and then adding the new ‘Builder Brush’
to your space (and delete the original components of course).

3. Check masked textures.
Fires, flares, etc. may sometimes have the masking indicated

only in the texture package, so use texture options to set the
‘masked’ flag as needed.

4. Export.
If all your geometry is additive, just export the entire level to

a T3D file. If your geometry is mixed additive and subtractive,
surround level with ‘Builder Brush’, right-click on it, ‘Transform
Permanently’ (which removes any transforms on the ‘Builder
Brush’), Intersect to create a ‘Builder Brush’ which contains all
the geometry, and export.

5. Skyboxes:
If you are using a skybox, you should export the main part of

the map to one T3D file, and the skybox to a separate one. You
may want to save your map as two separate files, one for the main
map, and one for the skybox, to clean out the non-geometric
components. For example, lights, sounds, and viewpoints in the
main map need not appear in the skybox, so those should be
deleted before exporting the skybox.

6. Run UnrealToX3D.
If the file contains a skybox, you should check that option on

the Geometry tab. You may want to explore other options as you
see fit. If you have not changed the T3D file and you are re-
running the conversion process with different options, you don’t
need to have it re-scan the input file (which can take quite a while
on large files). As of this writing, UnrealToX3D produces three
files: a VRML97 WRL file, an X3D X3D file, and an X3D XML

file. The last two are identical except for the extensions. XML
files can be easily loaded into Internet Explorer for examination
of the textual contents.

7. Test
Use your favorite viewer. Currently, all the files needed for

the resulting X3D are placed in one destination folder. You will
probably just double-click the X3D file. Go to step 3 as needed.

6 Examples

The following are a few screen shots of Unreal-based game
maps in X3D browsers. Of course, you can’t hear or interact with
any of these pictures, so use your imagination.

CityIntro – From the opening intro of Unreal Tournament.
Features: clouds in the sky move, chaser lights on buildings,

animated meshes, positional sounds, and interactive fly-through.
Level design by Shane Caudle.

CTF-Midtown – A popular fan map. From inside the Red Base.
The light-blue ‘cyclones’ are Visible Teleporters, and they swirl
around. The shaded pyramid of light is a ‘LightBox’ mesh. Level

design by Pavel 'NeSoLo' Bazylevich.

DM-Falkenstein – Arguably the most amazing Unreal space ever.
It is a faithful rendition of the Falkenstein castle (never built) of
Ludwig II of Bavaria. Masked textures make those chandeliers

and railings very lightweight. A teleporter is barely visible here.
The portraits are all custom textures. Level design by Robert

(YoMammy) Wey.

DM-DuskToDawn – An amazing reproduction of the setting of
vampire-ridden movie “From Dusk Till Dawn” directed by Robert
Rodriguez. This space features many custom textures inspired by
the movie, sounds (including the tune Salma Hayek danced to),
doors that open when bumped, and one of the coolest skyboxes

ever. Level design by Angelheart.

DM-ZeitkindPro – One of the best city simulations. This space
features realistic dynamic ambient sounds, elevators, and various

moving textures. Level design by Juergen Vierheilig.

Asgard (The Journeys End) - This is the final sequence from the
game ‘Rune’ and was exported via RuneEd. Note the translucent

Rainbow Bridge. There are several moving cloud layers, and
swirling stars to boot. Level design by Mick "VerMoorD' Beard.

7 Open Issues and Further Work

Although functional and useful, there is much work that can
still be done on this conversion process. The following is a short
list.

7.1 UnrealToX3D Enhancements
There are plenty of opportunities to improve the conversion

application:
Subtractives – It is unlikely that X3D will ever support

subtractive geometry. UnrealToX3D could, however, provide a
service to reduce the additive/subtractive objects into just additive
objects. This would remove the step of intersecting the entire
space with the builder brush and making one large object.

Using binaries – Currently UnrealToX3D only handles the
text-based T3D file, which only describes the scene. If, instead,
the compiled binary files that contain the light-baked textures,
BSP cuts, and meshes, were utilized, a huge gain in quality and
ease of use could be realized.

Animated textures, multitextures and shaders – Currently,
UnrealToX3D only deals with simple static bitmaps. Unreal
allows for page-flipped animations, which could be turned into
GIF or MNG, or even AVI files. The ‘FirePaint’ procedural
textures could probably be emulated with X3D shaders. UnrealEd
1 and 2 have limited texture options available in the T3D file, but
some multi-texturing capabilities exist in the binary format. And
UnrealEd 3.0 has moved most of the texture options, with much
greater multi-texturing support, to the binaries.

Rotating skyboxes - Unreal allows for the skybox to rotate.
This can give the illusion of day turning to night, or being on a
spinning asteroid in space. With slight modification,
UnrealToX3D could inline the skybox (rather than the other way
around), and animate the transform on the skybox.

Smooth fly-throughs – As of this writing, UnrealToX3D just
moves the fly-through viewpoint point-to-point between the
control points on the interpolation path. A spline-like interpolator
can be scripted and employed, using Chaikin’s algorithm.
UnrealEd 3.0 uses Bezier control points, this would also need to
be scripted.

Fog – Both Unreal and X3D have fog. It just needs to be
implemented in UnrealToX3D.

Better integration– It would be nice to have X3D as ‘Import’
and ‘Export’ options within UnrealEd itself. It may be possible to

integrate conversion functionality into UnrealEd via UnrealScript,
or it may require the cooperation of Epic Games.

Using X3D to its fullest – As of this writing, UnrealToX3D
does not take advantage of any of the new features of the X3D
specification. There’s no reason it shouldn’t. These would include
the event utilities, 2D interpolators, and multitexturing.

Compression – X3D allows for the data to be compressed with
GZIP. This is not currently integrated into UnrealToX3D.

Greater support for UnrealEd 3.0 – UnrealToX3D was
developed before UnrealEd 3.0 hit the stands. Small changes will
be needed to get textures to work the same, but UnrealEd 3.0
includes many new features which would be nice to support.

Multiplayer – No work has been done in the realm of multi-
player (multi-avatar) spaces. It is unclear what, if anything, would
need to be done.

7.2 X3D Enhancements
As rich as it is, there are still some things missing from the

X3D specification that would make conversions complete, and the
experience more real.

Global ambient light – Could be scoped to the entire space, or
within zones.

Enhanced lighting model – Currently, X3D uses vertex
shading only, and is specified only to a maximum of 8 lights. It
could allow for viewers to auto-bake static lighting at load-time,
or use pixel shaders.

GIF support – Unisys notwithstanding, masked (1-bit alpha)
animated bitmaps are ubiquitous. They are probably the easiest
‘movie’ texture to create, they are light-weight, and can include
transparency.

Arbitrary shapes for avatars, zones, and proximity sensors –
The current specification allows only for boxes for proximity
sensors, and a sphere for the avatar. This makes realistic collisions
impossible in some cases. In Unreal, fog is specified per zone,
which may be implemented in X3D as a cell. The specification
would need to be extended to allow for arbitrary geometry for all
these nodes.

Navigation modes including ‘riding movers’ –
Bitmanagement Software has taken some initiative along these
lines, allowing for ‘game’ navigation, which gives additional
degrees of freedom while walking. But the specification would
need to be amended to allow the avatar to ‘ride’ objects that move
by jumping/stepping upon them. The avatar would then be
attached to the object while it moves, while still allowing the
avatar to move about freely upon it. This would allow for realistic
elevators, cars, planes, etc. Actually, this may work in some
viewers, but since the specification is non-specific in this regard,
it’s not guaranteed. The ability to crouch and jump would also add
realism.

Particle systems – UnrealEd will let you place parameterized
particle generators of many sorts for sparks, smoke, etc. These can
be scripted, but native support would be more efficient.

Shadows – There is no provision in X3D for shadows.
Reflections – Real live reflective materials, not just

environment mapping.
Doppler shift – When there is relative motion between a sound

and an avatar, the pitch of that sound could be Doppler-shifted.
Gravity and velocity – Improved support for altering the

direction and stength of gravity, and a ‘velocity’ component,
would allow for more realistic simulation of non-Earth gravity
spaces, flowing water, strong winds, etc. These are all supported
in Unreal already.

7.3 Somewhere in between - Universal Behaviors?
Short of extending the X3D specification, a standardized set

of external protos which define behavior can be stewarded. All the
scripting that describes the behaviors would be in these external
files. The references to these protos, used in the body of the X3D
itself, could in theory be standardized and recognized by X3D
tools, such that these behaviors could be imported and exported.
This would be similar to the Universal Media project currently
supported in the X3D community. Such an effort would mean an
author could attach simple behaviors, such as ‘move when
bumped’ and use another tools to make further modifications,
without losing this behavior. In theory, conversion to/from other
systems (Quake, Shockwave, Axel, Atmosphere, etc.) would also
then be possible.

8 Conclusion
The free Unreal Editor can be used to create realistic game-

like experiences in X3D, which can be experienced by anyone
with an appropriate browser plug-in. With UnrealToX3d, anyone
can now make rich, compelling, and very lively 3D experiences,
for almost no cost, and with no need for programming expertise or
knowledge of the internal representation of the spaces they create.
Interactive elements are designed visually, rather than with a text
editor, so the author need not be an engineer, but an artist. Unreal
authors can publish their work online to advertise their work,
whether as a game preview, or completely independent art. The
price and demographic for Unreal makes it a great choice for
education, both to teach the authoring of interactive 3D, and to
publish student projects.

X3D is an excellent format for the interchange of interactive
3D spaces. As more authoring environments support the ability to
use X3D, and as they become cheaper and easier to use, 3D
spaces will likely proliferate on the Internet.

What has been describe here is only the beginning. Ongoing
work in this area can bring added realism and increased simplicity
to the creation of virtual realities.

To get your copy of UnrealEd, buy Unreal-based games, such
as Unreal II and Unreal Tournament 2003 for Windows PC.

To get your copy of UnrealToX3D, visit www.unrealroc.com
and download it for free.

References

Unreal Technology at unreal.epicgames.com
Web3D Consortium at www.web3d.org
Unreal Realm of Concepts at www.unrealroc.com
UTPT (Unreal Tournament Package Tool) by Antonio Cordero
Balcázar at www.acordero.org/projects/utpt

Unreal Tournament c1999 - 2001 Epic Games Inc. Created by
Epic Games, Inc. in collaboration with Digital Extremes. Unreal
and the Unreal logos are trademarks of Epic Games, Inc. All
rights reserved.

RUNE is a 3D action game developed by Human Head Studios
Inc. to be published in Fall 2000 by Gathering Of Developers.
Human Head is a development company based in Madison,
Wisconsin and is comprised of veteran game developers from
Raven Software and FASA Interactive.

Acknowledgements

Many thanks to Tony Parisi of Media Machines for providing
guidance on this paper, and all manner of mentoring on VRML
and X3D.

Thanks also to Alan Hudson at Yumetech, and Aaron E. Walsh of
Mantis Development Corporation, for testing and guidance.

Thanks to all the Unreal mappers, only a few of which are
mentioned here, for their spectacular efforts.
Most of all, thanks Epic Games and their support of Unreal
Editing.

	Abstract
	1Introduction
	2Background
	4The UnrealToX3D Converter
	4.1The Authoring Challenge
	4.2 The Converter Program: UnrealToX3D
	4.3Unreal Features Supported by UnrealToX3D
	4.4Behavioral Features
	5The Authoring Process
	6Examples
	7Open Issues and Further Work
	UnrealToX3D Enhancements
	7.2 X3D Enhancements
	7.3 Somewhere in between - Universal Behaviors?
	8Conclusion
	References
	Acknowledgements

